Message361666
A binary float has the form (-1)**sign * (1 + frac) * 2**exp, where sign is 0 or 1, frac is a rational value in the range [0, 1), and exp is a signed integer (but stored in non-negative, biased form). The smallest value of frac is epsilon, and the smallest increment for a given power of two is thus epsilon * 2**exp. To get exp for a given value, we have log2(abs(value)) == log2((1 + frac) * 2**exp) == log2(1 + frac) + log2(2**exp) == log2(1 + frac) + exp. Thus exp == log2(abs(value)) - log2(1 + frac). We know log2(1 + frac) is in the range [0, 1), so exp is the floor of the log2 result. For a binary64, epsilon is 2**-52, but we can leave it up to the floating point implementation by using sys.float_info:
>>> exp = math.floor(math.log2(time.time()))
>>> sys.float_info.epsilon * 2**exp
2.384185791015625e-07
Anyway, it's better to leave it to the experts:
>>> t = time.time()
>>> math.nextafter(t, math.inf) - t
2.384185791015625e-07 |
|
Date |
User |
Action |
Args |
2020-02-10 04:50:42 | eryksun | set | recipients:
+ eryksun, lemburg, rhettinger, mark.dickinson, vstinner, larry, stutzbach, serhiy.storchaka, vxgmichel |
2020-02-10 04:50:42 | eryksun | set | messageid: <1581310242.46.0.248495071154.issue39484@roundup.psfhosted.org> |
2020-02-10 04:50:42 | eryksun | link | issue39484 messages |
2020-02-10 04:50:42 | eryksun | create | |
|