
Python logic error when deal with re
and muti-threading
Bug Description
When use re and multi-threading it will trigger the bug.

Bug type: Logic Error

Test Enviroment:

Windows 7 SP1 x64 + python 3.4.3
Linux kali 3.14-kali1-amd64 + python 2.7.3

Bug 0x00
When we deal with the pattern like the following
(.*(.)?)*bcd\\t\\n\\r\\f\\a\\e\\071\\x3b\\$\\\\\?caxyz
the regexp.search() will be hang up.

POC for bug 0x00

#!/usr/bin/python

__author__ = 'bee13oy'

import re

source = "(.*(.)?)*bcd\\t\\n\\r\\f\\a\\e\\071\\x3b\\$\\\\\?caxyz"

def run(source):

 print(source)

 regexp = re.compile(r''+source+'')

 sgroup = regexp.search(source)

run(source)

Bug 0x00 Analyze
the following code is where the program trapped into an infinite loop:

LOCAL(Py_ssize_t)

SRE(match)(SRE_STATE* state, SRE_CODE* pattern, int match_all)

{

 SRE_CHAR* end = (SRE_CHAR *)state->end;

 Py_ssize_t alloc_pos, ctx_pos = -1;

 Py_ssize_t i, ret = 0;

 Py_ssize_t jump;

 unsigned int sigcount=0;

 SRE(match_context)* ctx;

 SRE(match_context)* nextctx;

 TRACE(("|%p|%p|ENTER\n", pattern, state->ptr));

 DATA_ALLOC(SRE(match_context), ctx);

 ctx->last_ctx_pos = -1;

 ctx->jump = JUMP_NONE;

 ctx->pattern = pattern;

 ctx->match_all = match_all;

 ctx_pos = alloc_pos;

 /* Cycle code which will never return*/

 for (;;) {

 ++sigcount;

 if ((0 == (sigcount & 0xfff)) && PyErr_CheckSignals())

 RETURN_ERROR(SRE_ERROR_INTERRUPTED);

 switch (*ctx->pattern++) {

 case SRE_OP_MARK:

 /* set mark */

 /* <MARK> <gid> */

 TRACE(("|%p|%p|MARK %d\n", ctx->pattern,

 ctx->ptr, ctx->pattern[0]));

}

Bug 0x01
When we use Python multithreading, and use join(timeout) to wait until the thread
terminates or timed out.

when we create a while cycle in the sub thread like the following testcase 1. It can
be exited normal with join(timeout).
when we write re code like the following testcase 2, It will never return and it will be
hang up without any response.

Attention: If you want to test in testcase 1, please comment the code related re. If you want
to test in testcase 2, please uncomment the while() cycle.

POC for bug 0x01

#!/usr/bin/python

__author__ = 'bee13oy'

import re

import os

import threading

timeout = 2

source = "(.*(.)?)*bcd\\t\\n\\r\\f\\a\\e\\071\\x3b\\$\\\\\?caxyz"

def run(source):

 ##################################

 # testcase 1 (Normal)

 # while(1):

 # print("test1")

 ###################################

 # testcase 2 (Bug:never return..）

 print(source)

 regexp = re.compile(r''+source+'')

 sgroup = regexp.search(source)

def handle():

 try:

 t = threading.Thread(target=run,args=(source,))

 t.setDaemon(True)

 t.start()

 t.join(timeout)

 print("finished...\n")

 except:

 print("exception ...\n")

handle()

Bug 0x01 Analyze
Bug 0x01 is based on Bug 0x00.

At first, it will run into the sub-thread, but it can't end normally. At this time, join(timeout) will
wait for the sub-thread return or timed out, and try to call timed out function in order that
main thread can get the control of the program.

The bug is that the sub-thread was into an infinite loop and the main-thread was into an
infinite loop too, which causes the program to be hang up.

By analyzing the source code of Python, we found that:

sub-thread is into an infinite loop
main-thread is into an infinite loop

sub-thread trapped into an infinite loop is described in bug 0x00 Analyze.

the following code is where main-thread trapped into an infinite loop:

static void take_gil(PyThreadState *tstate)

{

 int err;

 if (tstate == NULL)

 Py_FatalError("take_gil: NULL tstate");

 err = errno;

 MUTEX_LOCK(gil_mutex);
 if (!_Py_atomic_load_relaxed(&gil_locked))

 goto _ready;

 /*Cycle code which will never return*/

 while (_Py_atomic_load_relaxed(&gil_locked)) {

 int timed_out = 0;

 unsigned long saved_switchnum;

 saved_switchnum = gil_switch_number;

 COND_TIMED_WAIT(gil_cond, gil_mutex, INTERVAL, timed_out);

 /* If we timed out and no switch occurred in the meantime, it is
time

 to ask the GIL-holding thread to drop it. */

 if (timed_out &&

 _Py_atomic_load_relaxed(&gil_locked) &&

 gil_switch_number == saved_switchnum) {

 SET_GIL_DROP_REQUEST();

 }

 }

}

