Python logic error when deal with re
and muti-threading

Bug Description

When use re and multi-threading it will trigger the bug.
Bug type: Logic Error
Test Enviroment:

e Windows 7 SP1 x64 + python 3.4.3
e Linux kali 3.14-kalil-amd64 + python 2.7.3

Bug 0x00

When we deal with the pattern like the following
C*CO?2)*bed\\E\NNN\NP\NA\NG\\e\\O71\\x3b\\$\\\\\? caxyz
the regexp.search() will be hang up.

POC for bug 0x00

#1/usr/bin/python
__author__ = "beel3oy'
import re
source = "C.*C.)?2)*bcd\\E\\NM\NP\NF\Na\\e\\O71\\x3b\\$\\\\\?caxyz"
def run(source):
print(source)

regexp = re.compile(r''+source+'")

sgroup = regexp.search(source)

run(source)

Bug 0x00 Analyze

the following code is where the program trapped into an infinite loop:

LOCAL(Py_ssize_t)

SRE(match)(SRE_STATE* state, SRE_CODE* pattern, int match_all)
{
SRE_CHAR* end = (SRE_CHAR *)state->end;
Py_ssize_t alloc_pos, ctx_pos = -1;
Py_ssize_t i, ret = 0;
Py_ssize_t jump;
unsigned int sigcount=0;
SRE(match_context)* ctx;
SRE(match_context)* nextctx;
TRACECC" 1%p | %p |ENTER\n", pattern, state->ptr));
DATA_ALLOC(CSRE(match_context), ctx);
ctx->last_ctx_pos = -1;
ctx->jump = JUMP_NONE;
ctx->pattern = pattern;
ctx->match_all = match_all;
ctx_pos = alloc_pos;

/* Cycle code which will never return*/

for (550 {

++sigcount;

if ((@ == (sigcount & Oxfff)) & PyErr_CheckSignals())

RETURN_ERROR(CSRE_ERROR_INTERRUPTED);

switch (*ctx->pattern++) {

case SRE_OP_MARK:

/* set mark */

/* <MARK> <gid> */

TRACECC" 1%p | %p IMARK %d\n", ctx->pattern,
ctx->ptr, ctx->pattern[0@]));

Bug 0x01

When we use Python multithreading, and use join(timeout) to wait until the thread
terminates or timed out.

e when we create a while cycle in the sub thread like the following testcase 1. It can
be exited normal with join(timeout).

e when we write re code like the following testcase 2, It will never return and it will be
hang up without any response.

Attention: If you want to test in testcase 1, please comment the code related re. If you want
to test in testcase 2, please uncomment the while() cycle.

POC for bug 0x01

#1/usr/bin/python
__author__ = 'beel3oy'
import re
import os
import threading
timeout = 2
source = "(.*C.)?2)*bcd\\t\\M\\M\\F\\a\\e\\071\\x3b\\$\\\\\?caxyz"
def run(source):
R e B o
testcase 1 (Normal)

while(1):

print("testl™)
e e
testcase 2 (Bug:never return..)
print(source)
regexp = re.compile(r''+source+'")
sgroup = regexp.search(source)
def handle():
try:
t = threading.Thread(target=run,args=(source,))
t.setDaemon(True)
t.start(Q)
t.join(timeout)
print("finished...\n")
except:
print("exception ...\n")

handle()

Bug 0x01 Analyze
Bug 0x01 is based on Bug 0x00.

At first, it will run into the sub-thread, but it can't end normally. At this time, join(timeout) will
wait for the sub-thread return or timed out, and try to call timed out function in order that
main thread can get the control of the program.

The bug is that the sub-thread was into an infinite loop and the main-thread was into an
infinite loop too, which causes the program to be hang up.

By analyzing the source code of Python, we found that:

e sub-thread is into an infinite loop
e main-thread is into an infinite loop

sub-thread trapped into an infinite loop is described in bug 0x00 Analyze.

the following code is where main-thread trapped into an infinite loop:

static void take_gil(PyThreadState *tstate)

{
int err;
if (tstate == NULL)
Py_FatalError("take_gil: NULL tstate");
err = errno;
MUTEX_LOCK(gil_mutex);
if (!_Py_atomic_load_relaxed(&gil_locked))
goto _ready;
/*Cycle code which will never return*/
while (_Py_atomic_load_relaxed(&gil_locked)) {
int timed_out = 0;
unsigned long saved_switchnum;
saved_switchnum = gil_switch_number;
COND_TIMED_WAIT(Cgil_cond, gil_mutex, INTERVAL, timed_out);
/* If we timed out and no switch occurred in the meantime, it is
time

to ask the GIL-holding thread to drop it. */
if (timed_out &&
_Py_atomic_load_relaxed(&gil_locked) &&
gil_switch_number == saved_switchnum) {

SET_GIL_DROP_REQUESTQ);

