## Module statistics.py ## ## Copyright (c) 2013 Steven D'Aprano . ## ## Licensed under the Apache License, Version 2.0 (the "License"); ## you may not use this file except in compliance with the License. ## You may obtain a copy of the License at ## ## http://www.apache.org/licenses/LICENSE-2.0 ## ## Unless required by applicable law or agreed to in writing, software ## distributed under the License is distributed on an "AS IS" BASIS, ## WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ## See the License for the specific language governing permissions and ## limitations under the License. """ Basic statistics module. This module provides functions for calculating statistics of data, including averages, variance, and standard deviation. Calculating averages -------------------- ================== ============================================= Function Description ================== ============================================= mean Arithmetic mean (average) of data. median Median (middle value) of data. median_low Low median of data. median_high High median of data. median_grouped Median, or 50th percentile, of grouped data. mode Mode (most common value) of data. ================== ============================================= Calculate the arithmetic mean ("the average") of data: >>> mean([-1.0, 2.5, 3.25, 5.75]) 2.625 Calculate the standard median of discrete data: >>> median([2, 3, 4, 5]) 3.5 Calculate the median, or 50th percentile, of data grouped into class intervals centred on the data values provided. E.g. if your data points are rounded to the nearest whole number: >>> median_grouped([2, 2, 3, 3, 3, 4]) #doctest: +ELLIPSIS 2.8333333333... This should be interpreted in this way: you have two data points in the class interval 1.5-2.5, three data points in the class interval 2.5-3.5, and one in the class interval 3.5-4.5. The median of these data points is 2.8333... Calculating variability or spread --------------------------------- ================== ============================================= Function Description ================== ============================================= pvariance Population variance of data. variance Sample variance of data. pstdev Population standard deviation of data. stdev Sample standard deviation of data. ================== ============================================= Calculate the standard deviation of sample data: >>> stdev([2.5, 3.25, 5.5, 11.25, 11.75]) #doctest: +ELLIPSIS 4.38961843444... If you have previously calculated the mean, you can pass it as the optional second argument to the four "spread" functions to avoid recalculating it: >>> data = [1, 2, 2, 4, 4, 4, 5, 6] >>> mu = mean(data) >>> pvariance(data, mu) 2.5 Exceptions ---------- A single exception is defined: StatisticsError is a subclass of ValueError. """ __all__ = [ 'StatisticsError', 'pstdev', 'pvariance', 'stdev', 'variance', 'median', 'median_low', 'median_high', 'median_grouped', 'mean', 'mode', ] import collections import math import numbers from fractions import Fraction from decimal import Decimal # === Exceptions === class StatisticsError(ValueError): pass # === Private utilities === class _ExactRatio(object): """Support for (fast) calculations with exact ratios.""" # THINGS STILL WAITING TO BE DONE: # check # base this class on numbers.Rational ? @staticmethod def exact_ratio (x): # The original _exact_ratio; # this is now a staticmethod for fast access by instances try: try: # int, Fraction return x.numerator, x.denominator except AttributeError: # float try: return x.as_integer_ratio() except AttributeError: # Decimal try: return _ExactRatio.decimal_to_ratio(x) except AttributeError: msg = "can't convert type '{}' to numerator/denominator" raise TypeError(msg.format(type(x).__name__)) from None except (OverflowError, ValueError): # INF or NAN if __debug__: # Decimal signalling NANs cannot be converted to float :-( if isinstance(x, Decimal): assert not x.is_finite() else: assert not math.isfinite(x) return x, 'nan' @staticmethod def decimal_to_ratio(d): # The original _decimal_to_ratio; # now a staticmethod for fast access from within the class """Convert Decimal d to exact integer ratio (numerator, denominator). >>> from decimal import Decimal >>> _ExactRatio.decimal_to_ratio(Decimal("2.6")) (26, 10) """ sign, digits, exp = d.as_tuple() if exp in ('F', 'n', 'N'): # INF, NAN, sNAN assert not d.is_finite() raise ValueError num = 0 for digit in digits: num = num*10 + digit if sign: num = -num den = 10**-exp return (num, den) def __init__(self, x = None, y = None, *, T = None): self.default_type = T if x is None: self.numerator = 0 self.denominator = 1 return elif y is None: self.numerator, self.denominator = self.exact_ratio(x) # careful: we are not trying to reduce the fraction # this is ok for all built-in and stdlib types, # but note what the numbers docs say about the Rational abc: # "Subtypes Real and adds numerator and denominator properties, # which SHOULD be in lowest terms." return else: if not isinstance(x, numbers.Rational) or not isinstance( y, numbers.Rational): raise TypeError( 'Numerator and Denominator need to be Rational numbers.') self.numerator = x self.denominator = y self._ireduce() # reduce the fraction def to_type (self, T = None): # Coerce the ratio to a given type. # Used by many functions in the module # to return the right type. if T is None: if self.default_type is None: return self.numerator/self.denominator # return float else: T = self.default_type if issubclass(T, (int, Decimal)): # _sum used to do this only for Decimal, # but this version supports plain integer return values as well if self.denominator == 'nan': return self.numerator if self.denominator == 1: return T(self.numerator) return T(self.numerator)/self.denominator try: # go through Fraction for compatibility return T(Fraction(self.numerator, self.denominator)) except TypeError: # don't give up after all this work, but at least return a float try: return self.numerator/self.denominator except TypeError: if self.denominator == 'nan': return self.numerator raise def add_ratio_as_tuple (self, other): # Efficient in-place addition with a (numerator, denominator) pair. # Used by _sum. # careful: we are not checking other for garbage content # this is ok since only _sum uses this method and we trust it, # but keep this in mind if you change the implementation later. o_numerator = other[0] o_denominator = other[1] a = s_denominator = self.denominator b = o_denominator try: while b: a, b = b, a%b except TypeError: assert self.denominator == 'nan' self.numerator += o_numerator return self d1 = s_denominator // a d2 = o_denominator // a self.numerator=(self.numerator*d2+o_numerator*d1) self.denominator=(s_denominator*d2) return self def sqdiff (self, other): # Efficient calculation of a squared difference. # Used by _ss. o_numerator, o_denominator = self.exact_ratio(other) ret = _ExactRatio(T=self.default_type) a = s_denominator = self.denominator b = o_denominator try: while b: a, b = b, a%b except TypeError: assert self.denominator == 'nan' or o_denominator == 'nan' ret.numerator = (self.numerator-o_numerator)**2 ret.denominator = 'nan' return ret d1 = s_denominator // a d2 = o_denominator // a # The following is a bit faster than # (self.numerator*d2-o_numerator*d1)**2 # (s_denominator*d2)**2. # Overall impact is small though. x = self.numerator*d2-o_numerator*d1 y = s_denominator*d2 ret.numerator = x*x ret.denominator = y*y return ret def _ireduce (self): # Reduce the fraction in-place. a = self.numerator b = self.denominator while b: a, b = b, a%b self.numerator //= a self.denominator //= a return self def __truediv__(self, other): # Used by mean and others. o_numerator, o_denominator = self.exact_ratio(other) try: return _ExactRatio(self.numerator*o_denominator, self.denominator*o_numerator, T = self.default_type) except TypeError: # deal with INF, -INF, NAN if self.denominator == 'nan': try: return _ExactRatio(self.numerator*o_denominator/o_numerator, T = self.default_type) except TypeError: assert o_denominator == 'nan' return _ExactRatio(self.numerator/o_numerator) if o_denominator == 'nan': return _ExactRatio(self.numerator/(self.denominator*o_numerator)) def __eq__ (self, other): # Not used currently # except in test suite. if type(other) == type(self): if self.numerator != other.numerator: return False if self.denominator != other.denominator: return False # the next line breaks the test suite, but may be useful otherwise ? # if self.default_type != other.default_type: return False return True if self.to_type(type(other)) == other: return True return False def __repr__(self): try: type_name = self.default_type.__name__ except AttributeError: type_name = 'None' return "_ExactRatio({0}, {1}, T = {2})".format(self.numerator, self.denominator, type_name) def _sum(data, start=0): """_sum(data [, start]) -> value Return a high-precision sum of the given numeric data. If optional argument ``start`` is given, it is added to the total. If ``data`` is empty, ``start`` (defaulting to 0) is returned. Examples -------- >>> _sum([3, 2.25, 4.5, -0.5, 1.0], 0.75) _ExactRatio(11, 1, T = float) Some sources of round-off error will be avoided: >>> _sum([1e50, 1, -1e50] * 1000) # Built-in sum returns zero. _ExactRatio(1000, 1, T = float) Fractions and Decimals are also supported: >>> from fractions import Fraction as F >>> _sum([F(2, 3), F(7, 5), F(1, 4), F(5, 6)]) _ExactRatio(63, 20, T = Fraction) >>> from decimal import Decimal as D >>> data = [D("0.1375"), D("0.2108"), D("0.3061"), D("0.0419")] >>> _sum(data) _ExactRatio(6963, 10000, T = Decimal) """ n, d = _ExactRatio.exact_ratio(start) T = type(start) partials = {d: n} # map {denominator: sum of numerators} # Micro-optimizations. coerce_types = _coerce_types ExactRatio = _ExactRatio exact_ratio = _ExactRatio.exact_ratio partials_get = partials.get # Add numerators for each denominator, and track the "current" type. for x in data: T = _coerce_types(T, type(x)) n, d = exact_ratio(x) partials[d] = partials_get(d, 0) + n if 'nan' in partials: assert not math.isfinite(partials['nan']) return ExactRatio(partials['nan'], T = T) total = ExactRatio() # no need to use Fraction here anymore for d, n in sorted(partials.items()): total.add_ratio_as_tuple((n, d)) # much faster than Fraction.__iadd__ total.default_type = T # this fraction may not be fully reduced # because the tuples we added do not have to be total._ireduce() return total # return an instance of _ExactRatio def _coerce_types(T1, T2): """Coerce types T1 and T2 to a common type. >>> _coerce_types(int, float) Coercion is performed according to this table, where "N/A" means that a TypeError exception is raised. +----------+-----------+-----------+-----------+----------+ | | int | Fraction | Decimal | float | +----------+-----------+-----------+-----------+----------+ | int | int | Fraction | Decimal | float | | Fraction | Fraction | Fraction | N/A | float | | Decimal | Decimal | N/A | Decimal | float | | float | float | float | float | float | +----------+-----------+-----------+-----------+----------+ Subclasses trump their parent class; two subclasses of the same base class will be coerced to the second of the two. """ # Get the common/fast cases out of the way first. if T1 is T2: return T1 if T1 is int: return T2 if T2 is int: return T1 # Subclasses trump their parent class. if issubclass(T2, T1): return T2 if issubclass(T1, T2): return T1 # Floats trump everything else. if issubclass(T2, float): return T2 if issubclass(T1, float): return T1 # Subclasses of the same base class give priority to the second. if T1.__base__ is T2.__base__: return T2 # Otherwise, just give up. raise TypeError('cannot coerce types %r and %r' % (T1, T2)) def _counts(data): # Generate a table of sorted (value, frequency) pairs. if data is None: raise TypeError('None is not iterable') table = collections.Counter(data).most_common() if not table: return table # Extract the values with the highest frequency. maxfreq = table[0][1] for i in range(1, len(table)): if table[i][1] != maxfreq: table = table[:i] break return table # === Measures of central tendency (averages) === def mean(data, T = None): """Return the sample arithmetic mean of data. >>> mean([1, 2, 3, 4, 4]) 2.8 >>> from fractions import Fraction as F >>> mean([F(3, 7), F(1, 21), F(5, 3), F(1, 3)]) Fraction(13, 21) >>> from decimal import Decimal as D >>> mean([D("0.5"), D("0.75"), D("0.625"), D("0.375")]) Decimal('0.5625') If ``data`` is empty, StatisticsError will be raised. """ if iter(data) is data: data = list(data) n = len(data) if n < 1: raise StatisticsError('mean requires at least one data point') result = _sum(data)/n # the new T parameter is used by other module functions to retain # an exact return value. # Can also be used by users to get their desired type directly without # going through an additional (imprecise) conversion if T is _ExactRatio: return result return result.to_type(T) # FIXME: investigate ways to calculate medians without sorting? Quickselect? def median(data): """Return the median (middle value) of numeric data. When the number of data points is odd, return the middle data point. When the number of data points is even, the median is interpolated by taking the average of the two middle values: >>> median([1, 3, 5]) 3 >>> median([1, 3, 5, 7]) 4.0 """ data = sorted(data) n = len(data) if n == 0: raise StatisticsError("no median for empty data") if n%2 == 1: return data[n//2] else: i = n//2 return (data[i - 1] + data[i])/2 def median_low(data): """Return the low median of numeric data. When the number of data points is odd, the middle value is returned. When it is even, the smaller of the two middle values is returned. >>> median_low([1, 3, 5]) 3 >>> median_low([1, 3, 5, 7]) 3 """ data = sorted(data) n = len(data) if n == 0: raise StatisticsError("no median for empty data") if n%2 == 1: return data[n//2] else: return data[n//2 - 1] def median_high(data): """Return the high median of data. When the number of data points is odd, the middle value is returned. When it is even, the larger of the two middle values is returned. >>> median_high([1, 3, 5]) 3 >>> median_high([1, 3, 5, 7]) 5 """ data = sorted(data) n = len(data) if n == 0: raise StatisticsError("no median for empty data") return data[n//2] def median_grouped(data, interval=1): """"Return the 50th percentile (median) of grouped continuous data. >>> median_grouped([1, 2, 2, 3, 4, 4, 4, 4, 4, 5]) 3.7 >>> median_grouped([52, 52, 53, 54]) 52.5 This calculates the median as the 50th percentile, and should be used when your data is continuous and grouped. In the above example, the values 1, 2, 3, etc. actually represent the midpoint of classes 0.5-1.5, 1.5-2.5, 2.5-3.5, etc. The middle value falls somewhere in class 3.5-4.5, and interpolation is used to estimate it. Optional argument ``interval`` represents the class interval, and defaults to 1. Changing the class interval naturally will change the interpolated 50th percentile value: >>> median_grouped([1, 3, 3, 5, 7], interval=1) 3.25 >>> median_grouped([1, 3, 3, 5, 7], interval=2) 3.5 This function does not check whether the data points are at least ``interval`` apart. """ data = sorted(data) n = len(data) if n == 0: raise StatisticsError("no median for empty data") elif n == 1: return data[0] # Find the value at the midpoint. Remember this corresponds to the # centre of the class interval. x = data[n//2] for obj in (x, interval): if isinstance(obj, (str, bytes)): raise TypeError('expected number but got %r' % obj) try: L = x - interval/2 # The lower limit of the median interval. except TypeError: # Mixed type. For now we just coerce to float. L = float(x) - float(interval)/2 cf = data.index(x) # Number of values below the median interval. # FIXME The following line could be more efficient for big lists. f = data.count(x) # Number of data points in the median interval. return L + interval*(n/2 - cf)/f def mode(data): """Return the most common data point from discrete or nominal data. ``mode`` assumes discrete data, and returns a single value. This is the standard treatment of the mode as commonly taught in schools: >>> mode([1, 1, 2, 3, 3, 3, 3, 4]) 3 This also works with nominal (non-numeric) data: >>> mode(["red", "blue", "blue", "red", "green", "red", "red"]) 'red' If there is not exactly one most common value, ``mode`` will raise StatisticsError. """ # Generate a table of sorted (value, frequency) pairs. table = _counts(data) if len(table) == 1: return table[0][0] elif table: raise StatisticsError( 'no unique mode; found %d equally common values' % len(table) ) else: raise StatisticsError('no mode for empty data') # === Measures of spread === # See http://mathworld.wolfram.com/Variance.html # http://mathworld.wolfram.com/SampleVariance.html # http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance # # Under no circumstances use the so-called "computational formula for # variance", as that is only suitable for hand calculations with a small # amount of low-precision data. It has terrible numeric properties. # # See a comparison of three computational methods here: # http://www.johndcook.com/blog/2008/09/26/comparing-three-methods-of-computing-standard-deviation/ def _ss(data, c = None): """Return sum of square deviations of sequence data. If ``c`` is None, the mean is calculated in one pass, and the deviations from the mean are calculated in a second pass. Otherwise, deviations are calculated from ``c`` as given. Use the second case with care, as it can lead to garbage results. """ if c is None: c = mean(data, _ExactRatio) else: c = _ExactRatio(c, T = type(c)) ss = _sum(c.sqdiff(x) for x in data) # no second pass required anymore ss.default_type = c.default_type # result should be of same type as the mean assert not ss.to_type() < 0, 'negative sum of square deviations: %f' % ss.to_type(float) return ss def variance(data, xbar=None, T = None): """Return the sample variance of data. data should be an iterable of Real-valued numbers, with at least two values. The optional argument xbar, if given, should be the mean of the data. If it is missing or None, the mean is automatically calculated. Use this function when your data is a sample from a population. To calculate the variance from the entire population, see ``pvariance``. Examples: >>> data = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5] >>> variance(data) 1.3720238095238095 If you have already calculated the mean of your data, you can pass it as the optional second argument ``xbar`` to avoid recalculating it: >>> m = mean(data) >>> variance(data, m) 1.3720238095238095 This function does not check that ``xbar`` is actually the mean of ``data``. Giving arbitrary values for ``xbar`` may lead to invalid or impossible results. Decimals and Fractions are supported: >>> from decimal import Decimal as D >>> variance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")]) Decimal('31.01875') >>> from fractions import Fraction as F >>> variance([F(1, 6), F(1, 2), F(5, 3)]) Fraction(67, 108) """ if iter(data) is data: data = list(data) n = len(data) if n < 2: raise StatisticsError('variance requires at least two data points') result = _ss(data, xbar)/(n-1) if T is _ExactRatio: return result return result.to_type(T) def pvariance(data, mu = None, T = None): """Return the population variance of ``data``. data should be an iterable of Real-valued numbers, with at least one value. The optional argument mu, if given, should be the mean of the data. If it is missing or None, the mean is automatically calculated. Use this function to calculate the variance from the entire population. To estimate the variance from a sample, the ``variance`` function is usually a better choice. Examples: >>> data = [0.0, 0.25, 0.25, 1.25, 1.5, 1.75, 2.75, 3.25] >>> pvariance(data) 1.25 If you have already calculated the mean of the data, you can pass it as the optional second argument to avoid recalculating it: >>> mu = mean(data) >>> pvariance(data, mu) 1.25 This function does not check that ``mu`` is actually the mean of ``data``. Giving arbitrary values for ``mu`` may lead to invalid or impossible results. Decimals and Fractions are supported: >>> from decimal import Decimal as D >>> pvariance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")]) Decimal('24.815') >>> from fractions import Fraction as F >>> pvariance([F(1, 4), F(5, 4), F(1, 2)]) Fraction(13, 72) """ if iter(data) is data: data = list(data) n = len(data) if n < 1: raise StatisticsError('pvariance requires at least one data point') result = _ss(data, mu)/n if T is _ExactRatio: return result return result.to_type(T) def stdev(data, xbar=None, T = None): """Return the square root of the sample variance. See ``variance`` for arguments and other details. >>> stdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75]) 1.0810874155219827 """ var = variance(data, xbar, _ExactRatio) try: return var.to_type(T).sqrt() except AttributeError: try: return math.sqrt(var.to_type(T)) except TypeError: return math.sqrt(var.to_type(float)) def pstdev(data, mu=None, T = None): """Return the square root of the population variance. See ``pvariance`` for arguments and other details. >>> pstdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75]) 0.986893273527251 """ var = pvariance(data, mu, _ExactRatio) try: return var.to_type(T).sqrt() except AttributeError: try: return math.sqrt(var.to_type(T)) except TypeError: return math.sqrt(var.to_type(float))