
Let T be the set of (possible) Python types. Define a relation:

Definition 1. For t1, t2 ∈ T we say t1 is layout compatible with t2, written t1 E t2
if t1’s description of the memory layout of its instances is safe for use with instances
of t2.

This is clearly reflexive, and if it’s not transitive we’re in serious trouble. It’s
not a partial order as it’s not anti-symmetric, but:

Definition 2. For t1, t2 ∈ T we say t1 and t2 are layout equivalent, written t1 ∼ t2
if t1 E t2 and t2 E t1.

E defines a partial order on ∼-equivalence classes. The solid base function in
Objects/typeobject.c is a canonical way of choosing a reprentative of a type t’s
∼-equivalence class, so we can mostly ignore this detail.

Given types t1 and t2 the meet t1 M t2 is always defined, up to ∼, but the join
t1 O t2 may not be – in fact it’s only defined when the ti are E-related in some order
and in that case is the E-greater of the ti.

Definition 3. A (finite) set {ti} of types is acceptable for subclassing if the set
has a E-maximal element.

A subclass of an acceptable {ti} will be E-greater than this maximal element.

Definition 4. A sequence t1, . . . , tn is an acceptable MRO for t if ti E t for all
i = 1, . . . , n.

This means, broadly, that if u is an element of an acceptable MRO for t you can
use u’s description of the memory layout of its instances to describe an instance of
t without causing crashes or other erroneous behaviour.

Theorem 1. If a set of types {ti} is acceptable for subclassing and each ti has
an acceptable MRO, then the default MRO computation for Python will produce an
acceptable MRO for the new subclass.

Proof. Let the MRO of each ti be written ti1, ti2, . . . , tini , so we have tij E ti (each
ti has an acceptable MRO).

Let t be the join of ti, so ti E t ({ti} is acceptable for subclassing).
Let the new subclass of {ti} be u (so t E u).
Let the output of the default MRO computation be v1, . . . , vk.
Now the default MRO computation produces a sequence which contains only

types already contained in the MRO of one of the ti or the new subclass itself u.
If vl = tij for some i and j, then vl = tij E ti E t E u. Trivially, if vl = u,

vl = u E u.
So v1, . . . , vk is an acceptable MRO for u. �

So, does this formalism match up with what the code does? Potential problems:
• is layout compatibility really transitive?
• does the code compute layout compatibility correctly?

I’d be reasonably – but not completely – confident of both if we ignore varadic
types. I don’t know whether it would be better to try to prove the code we have
now computes what it thinks it does, or to rewrite it using language closer to what
I have used in this note.

1


