
Document generated by Confluence on Aug 07, 2008 18:39 Page 1

NTIC : Using a customized malloc on AIX 5.2 and 5.3

This page last changed on Jun 24, 2008 by sable.
Sungard GP3 uses a virtual machine called "Magnum Runtime" to execute applications written with an in-
house language called ADL and compiled to some bytecode representation. Our application can be used
by hundreds of clients at the same time for many hours a day on various architectures including AIX 5.2
and 5.3. As a result the memory consummation of our virtual machine is a critical parameter that can
have a huge impact on the memory requirements of the server.

Lately we have worked on some optimization of our virtual machine; those optimizations require a
analysis of the ADL bytecode which consumes an important amount of mermory at launch time, but
which brings big performances improvements later. This important allocation of memory shoud not
be a problem as it only happens at launch time for a short lap of time, and it gets freed after that.
Unfortunately, we have observed on AIX systems that once our virtual machine has allocated some
memory for the optimization phase, that memory never gets freed afterwhile. This behavior is not
observed on other systems like Linux.

We first supposed this was a memory leak, but after quite some time of analysis, we have actually come
to the conclusion that this is a system problem as can be illustrated by the test cases that we provide
below: AIX never actually releases the memory that is freed by our application.

Later we found about the MALLOCOPTIONS=disclaim environment variable which actually forced the
system to release the memory. While this allowed our application to correctly release memory, this came
with a high cost: the performances when running with this option were extremely deteriorated as can be
shown by another test case below.

We have also come with a way to bypass this behavior by using a customized malloc implementation.
This malloc is based on some work by Doug Lea as described in his document A Memory Allocator. The
malloc implementation described in this document can be downloaded from: ftp://g.oswego.edu/pub/
misc/malloc.c

When using this customized malloc, we have found that the memory actually got freed when it should be,
as is illustrated by the test cases below.

Illustration of the problem
Initial test to show that free does not actually make memory available to the system.

The test application is a trivial C test case which runs on AIX 5.3. This application will allocate then free a
memory area:

sable@sirius test$ cat alloc1.c
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(void)
{
 char *ptr = NULL;
 int size = 128 * 1024 * 1024;
 int i;
 int num;

 printf("initial state\n");
 scanf("%d", &num);
 ptr = malloc(size);
 for(i = 0; i < size; i++)
 *(ptr + i) = 1;
 printf("allocated %d bytes\n", size);
 scanf("%d", &num);
 free(ptr);
 printf("after free\n");
 scanf("%d", &num);
 return 0;
}

http://g.oswego.edu/dl/html/malloc.html
ftp://g.oswego.edu/pub/misc/malloc.c
ftp://g.oswego.edu/pub/misc/malloc.c

Document generated by Confluence on Aug 07, 2008 18:39 Page 2

sable@sirius test$ cc alloc1.c -o alloc1
sable@sirius test$./alloc1
initial state

[2]+ Stopped ./alloc1
sable@sirius test$ ps -u sable | grep alloc1
 1187 762020 pts/25 0:00 alloc1
sable@sirius test$ sudo /usr/bin/svmon -P 762020

 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd 16MB
 762020 alloc1 23525 7148 19804 65252 N N N

 PageSize Inuse Pin Pgsp Virtual
 s 4 KB 7429 7148 3836 11220
 m 64 KB 1006 0 998 3377

 Vsid Esid Type Description PSize Inuse Pin Pgsp Virtual
 6f0ad d work shared library text m 1006 0 998 3377
 0 0 work kernel s 7396 7145 3836 11189
 7966 2 work process private s 21 3 0 21
 ed43b f work shared library data s 10 0 0 10
 e65da 1 pers code,/dev/hd1:49163 s 2 0 - -
sable@sirius test$ fg
./alloc1
1
allocated 134217728 bytes

[2]+ Stopped ./alloc1

svmon correctly shows that the memory has been allocated

sable@sirius test$ sudo /usr/bin/svmon -P 762020

 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd 16MB
 762020 alloc1 56252 7148 19804 98027 N N N

 PageSize Inuse Pin Pgsp Virtual
 s 4 KB 40204 7148 3836 43995
 m 64 KB 1003 0 998 3377

 Vsid Esid Type Description PSize Inuse Pin Pgsp Virtual
 7966 2 work process private s 32789 3 0 32789
 6f0ad d work shared library text m 1003 0 998 3377
 0 0 work kernel s 7396 7145 3836 11189
 ed43b f work shared library data s 17 0 0 17
 e65da 1 pers code,/dev/hd1:49163 s 2 0 - -

However when the memory is freed by the application, the system never actually releases it:

sable@sirius test$ fg
./alloc1
1
after free

[2]+ Stopped ./alloc1
sable@sirius test$ sudo /usr/bin/svmon -P 762020

 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd 16MB
 762020 alloc1 56188 7148 19804 98027 N N N

 PageSize Inuse Pin Pgsp Virtual
 s 4 KB 40204 7148 3836 43995
 m 64 KB 999 0 998 3377

Document generated by Confluence on Aug 07, 2008 18:39 Page 3

 Vsid Esid Type Description PSize Inuse Pin Pgsp Virtual
 7966 2 work process private s 32789 3 0 32789
 6f0ad d work shared library text m 999 0 998 3377
 0 0 work kernel s 7396 7145 3836 11189
 ed43b f work shared library data s 17 0 0 17
 e65da 1 pers code,/dev/hd1:49163 s 2 0 - -

Even after waiting a long time, on a busy system, the memory never actually gets released. Some
additional tests, with the help of an IBM expert showed that at best the memory can be put in swap when
the system memory is really busy, and that this memory in swap may be retrieved by the system with a
huge cost on performances.

sable@sirius test$ sleep 1000; sudo /usr/bin/svmon -P 762020

 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd 16MB
 762020 alloc1 56188 7148 19804 98027 N N N

 PageSize Inuse Pin Pgsp Virtual
 s 4 KB 40204 7148 3836 43995
 m 64 KB 999 0 998 3377

 Vsid Esid Type Description PSize Inuse Pin Pgsp Virtual
 7966 2 work process private s 32789 3 0 32789
 6f0ad d work shared library text m 999 0 998 3377
 0 0 work kernel s 7396 7145 3836 11189
 ed43b f work shared library data s 17 0 0 17
 e65da 1 pers code,/dev/hd1:49163 s 2 0 - -

Using disclaim to release memory
The system environment variable MALLOCOPTIONS=disclaim can be used to force the system to release
the memory when the application does a free.

sable@sirius test$ MALLOCOPTIONS=disclaim ./alloc1
initial state

1
allocated 134217728 bytes

[3]+ Stopped MALLOCOPTIONS=disclaim ./alloc1
sable@sirius test$ ps -u sable | grep alloc1
 1187 1528026 pts/25 0:01 alloc1
sable@sirius test$ sudo /usr/bin/svmon -P 1528026

 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd 16MB
 1528026 alloc1 56188 7148 19804 98027 N N N

 PageSize Inuse Pin Pgsp Virtual
 s 4 KB 40204 7148 3836 43995
 m 64 KB 999 0 998 3377

 Vsid Esid Type Description PSize Inuse Pin Pgsp Virtual
 7c78c 2 work process private s 32789 3 0 32789
 6f0ad d work shared library text m 999 0 998 3377
 0 0 work kernel s 7396 7145 3836 11189
 fdab9 f work shared library data s 17 0 0 17
 e65da 1 pers code,/dev/hd1:49163 s 2 0 - -
sable@sirius test$ fg
MALLOCOPTIONS=disclaim ./alloc1
1
after free

[3]+ Stopped MALLOCOPTIONS=disclaim ./alloc1

Document generated by Confluence on Aug 07, 2008 18:39 Page 4

sable@sirius test$ sudo /usr/bin/svmon -P 1528026

 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd 16MB
 1528026 alloc1 23420 7148 19804 65259 N N N

 PageSize Inuse Pin Pgsp Virtual
 s 4 KB 7436 7148 3836 11227
 m 64 KB 999 0 998 3377

 Vsid Esid Type Description PSize Inuse Pin Pgsp Virtual
 6f0ad d work shared library text m 999 0 998 3377
 0 0 work kernel s 7396 7145 3836 11189
 7c78c 2 work process private s 21 3 0 21
 fdab9 f work shared library data s 17 0 0 17
 e65da 1 pers code,/dev/hd1:49163 s 2 0 - -

This is the behavior that would be expected by default when allocating and freeing some memory in an
application.

This come however with a huge cost: we assist to a huge deterioration of performances, as is illustrated
by the following test case:

sable@sirius test$ cat alloc2.c
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(void)
{
 char *ptr = NULL;
 int size = 1024 * 1024;
 int i, j;
 int num;

 for(j = 0; j < 1024 * 1024; j++) {
 ptr = malloc(size);
 free(ptr);
 }
 printf("finished loop %d\n", j);
 return 0;
}
sable@sirius test$ cc -o alloc2 alloc2.c
sable@sirius test$ /usr/bin/time ./alloc2
finished loop 1048576

Real 0.40
User 0.16
System 0.00
sable@sirius test$ MALLOCOPTIONS=disclaim /usr/bin/time ./alloc2
finished loop 1048576

Real 121.56
User 4.77
System 44.87

With the MALLOCOPTION=disclaim option, this simple test case will take more than 300% more time
to complete. We did some tests with real applications, and we observed the same deterioration of
performances. So even if this option ensure that the memory is correctly released, it is not usable on a
production server as it generates a huge deterioration of performances.

Customized malloc
This third test uses the exact same test case as in the first example above, but this time it is linked with
dlmalloc, the customized malloc.

Document generated by Confluence on Aug 07, 2008 18:39 Page 5

The file malloc-2.7.2.c can be downloaded from ftp://g.oswego.edu/pub/misc/malloc.c.

dlmalloc uses both sbrk and mmap. The sbrk system call will change the size of the heap to be larger
or smaller as needed, while the mmap system call will be used when extremely large segments are
allocated. The heap method suffers the same flaws as any other, while the mmap method may avert
problems with huge buffers trapping a small allocation at the end after their expiration.

The mmap method has its own flaws: it always allocates a segment by mapping entire pages. Mapping
even a single byte will use an entire page
which is usually 4096 bytes. Although this is usually quite acceptable, many architectures provide large
page support (4 MiB or 2 MiB with PAE
on IA-32). The combination of this method with large pages can potentially waste vast amounts of
memory. The advantage to the mmap
method is that when the segment is freed, the memory is returned to the system immediately.

As we will see, the memory is correctly released to the system.

We link the source with dlmalloc:

sable@sirius test$ cc alloc1.c malloc-2.7.2.c -o alloc3
alloc1.c:
malloc-2.7.2.c:
sable@sirius test$./alloc3
initial state

[1]+ Stopped ./alloc3
sable@sirius test$ ps -u sable | grep alloc3
 1187 2654254 pts/6 0:00 alloc3
sable@sirius test$ sudo /usr/bin/svmon -P 2654254

 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd 16MB
 2654254 alloc3 23596 7148 19802 65252 N N N

 PageSize Inuse Pin Pgsp Virtual
 s 4 KB 7436 7148 3834 11220
 m 64 KB 1010 0 998 3377

 Vsid Esid Type Description PSize Inuse Pin Pgsp Virtual
 6f0ad d work shared library text m 1010 0 998 3377
 0 0 work kernel s 7399 7145 3834 11189
 575ec 2 work process private s 21 3 0 21
 6906 f work shared library data s 10 0 0 10
 b6111 1 pers code,/dev/hd1:49168 s 6 0 - -
sable@sirius test$ fg
./alloc3
1
allocated 134217728 bytes

[1]+ Stopped ./alloc3
sable@sirius test$ sudo /usr/bin/svmon -P 2654254

 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd 16MB
 2654254 alloc3 56372 7148 19802 98028 N N N

 PageSize Inuse Pin Pgsp Virtual
 s 4 KB 40212 7148 3834 43996
 m 64 KB 1010 0 998 3377

 Vsid Esid Type Description PSize Inuse Pin Pgsp Virtual
 a4db7 - work mmap paging s 32769 0 0 32769
 6f0ad d work shared library text m 1010 0 998 3377
 0 0 work kernel s 7399 7145 3834 11189
 575ec 2 work process private s 21 3 0 21
 6906 f work shared library data s 17 0 0 17

ftp://g.oswego.edu/pub/misc/malloc.c

Document generated by Confluence on Aug 07, 2008 18:39 Page 6

 b6111 1 pers code,/dev/hd1:49168 s 6 0 - -
 d082 3 mmap maps 1 source(s) s 0 0 - -

The memory is allocated and accessed just like in the previous test case.

sable@sirius test$ fg
./alloc3
1
after free

[1]+ Stopped ./alloc3
sable@sirius test$ sudo /usr/bin/svmon -P 2654254

 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd 16MB
 2654254 alloc3 23795 7148 19802 65259 N N N

 PageSize Inuse Pin Pgsp Virtual
 s 4 KB 7443 7148 3834 11227
 m 64 KB 1022 0 998 3377

 Vsid Esid Type Description PSize Inuse Pin Pgsp Virtual
 6f0ad d work shared library text m 1022 0 998 3377
 0 0 work kernel s 7399 7145 3834 11189
 575ec 2 work process private s 21 3 0 21
 6906 f work shared library data s 17 0 0 17
 b6111 1 pers code,/dev/hd1:49168 s 6 0 - -

However this time, when free is called in the application, the memory is directly released and available to
the system:

Concerning performances, they are a least 2 times better than disclaim on our simple test case:

sable@sirius test$ cc alloc2.c malloc-2.7.2.c -o alloc4
alloc2.c:
malloc-2.7.2.c:
sable@sirius test$ /usr/bin/time ./alloc4
finished loop 1048576

Real 56.96
User 8.12
System 13.32

Some tests on real applications allocating various size of buffers have shown that the performances are
actually quite good, while MALLOCOPTIONS=disclaim performances are very bad.

Conlusion
In the context of our application which can have many hundred instances running for hours, this
difference in behavior can dramatically reduce the memory requirements on the server and increase
performances.

We would appreciate to hear from IBM experts if this problem has already been observed for some other
applications, and how it has been handled until now? Also we would like to know what is your position
concerning the use of an customized malloc in applications running on AIX.

