NTIC : Using a customized malloc on Solaris 8 and 10.

This page last changed on Jun 24, 2008 by sable.

Sungard GP3 uses a virtual machine called "Magnum Runtime" to execute applications written with an in-
house language called ADL and compiled to some bytecode representation. Our application can be used
by hundreds of clients at the same time for many hours a day on various architectures including Solaris
8 and 10. As a result the memory consummation of our virtual machine is a critical parameter that can
have a huge impact on the memory requirements of the server.

Lately we have worked on some optimization of our virtual machine; those optimizations require a
analysis of the ADL bytecode which consumes an important amount of memory at launch time, but
which brings big performances improvements later. This important allocation of memory should not
be a problem as it only happens at launch time for a short lap of time, and it gets freed after that.
Unfortunately, we have observed on Solaris systems that once our virtual machine has allocated some
memory for the optimization phase, that memory never gets freed afterwhile. This behavior is not
observed on other systems like Linux.

We first supposed this was a memory leak, but after quite some time of analysis, we have actually come
to the conclusion that this is a system problem as can be illustrated by the test cases that we provide
below: Solaris never actually releases the memory that is freed by our application.

We have also come with a way to bypass this behavior by using a customized malloc implementation.
This malloc is based on some work by Doug Lea as described in the document A Memory Allocator. The
malloc implementation described in this document can be downloaded from: ftp://g.oswego.edu/pub/

misc/malloc.c

When using this customized malloc, we have found that the memory actually got freed when it should be,
as is illustrated by the test cases below.

Illustration of the problem

Initial test to show that free does not actually make memory available to the system.

The test application is a trivial C test case which runs on Solaris 10. This application will allocate then free
a memory area:

neptune: ~/ ssa/test$ cat allocl.c
#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>

#i ncl ude <unistd. h>

int main(void)
{
char *ptr = NULL;
int size = 1024 * 1024 * 1024;
int i;
int num

printf("initial state\n");
scanf ("%d", #
ptr = mall oc(size);
for(i =0; i < size; i++)
*(ptr +1i) = 1;
printf("allocated %l bytes\n", size);
scanf (" %", &nun);
free(ptr);
printf("after free\n");
scanf ("%d", #
return O;
}
neptune: ~/ ssa/test$ cc allocl.c -0 allocl
neptune: ~/ssa/test$./allocl
initial state
nZ

Document generated by Confluence on Aug 07, 2008 18:40 Page 1

http://g.oswego.edu/dl/html/malloc.html
ftp://g.oswego.edu/pub/misc/malloc.c
ftp://g.oswego.edu/pub/misc/malloc.c

[1]+ Stopped .lallocl
neptune: ~/ ssa/test$ ps -u recette | grep allocl
25294 pts/ 37 0: 00 allocl

neptune: ~/ ssa/test$ pmap -x 25294

25294: ./allocl

Address Kbyt es RSS Anon Locked Mbde Mapped File
00010000 8 8 - - r-x-- allocl
00020000 8 8 8 - rw-- allocl
FF280000 864 808 - - r-x-- libc.so. 1
FF368000 32 32 32 - rwx-- libc.so. 1
FF370000 8 8 8 - rwx-- libc.so.1
FF380000 8 8 8 - FWX- - [anon]
FF390000 8 8 - - r-x-- libc_psr.so.1
FF3A0000 24 16 16 - TWX- - [anon]
FF3B0000 184 184 - - r-x-- ld.so. 1
FF3EEO00 8 8 8 - rwx-- ld.so. 1
FF3F0000 8 8 8 - rwx-- ld.so. 1
FFBFCO00 16 16 16 - W - [stack]
total Kb 1176 1112 104 -
neptune: ~/ ssa/test$ fg
./allocl
1
al |l ocated 1073741824 bytes
nZ
[1]+ Stopped .lallocl

pmap correctly shows that the memory has been allocated

nept une: ~/ ssa/test$ pmap -x 25294
25294: ./allocl

Address Kbyt es RSS Anon Locked Mbde Mapped File
00010000 8 8 - - r-x-- allocl
00020000 8 8 8 - rwx-- allocl
00022000 32632 32632 25808 - WK- - [heap]
02000000 1048576 1048576 1048576 - TWK- - [heap]
FF280000 864 800 - - r-x-- libc.so. 1
FF368000 32 32 32 - rwx-- libc.so. 1
FF370000 8 8 8 - rwx-- libc.so.1
FF380000 8 8 8 - FWX- - [anon]
FF390000 8 8 - - r-x-- libc_psr.so.1
FF3A0000 24 16 16 - TWX-- [anon]
FF3B0000 184 184 - - r-x-- ld.so. 1
FF3EE000 8 8 8 - rwx-- ld.so. 1
FF3F0000 8 8 8 - rwx-- ld.so. 1
FFBFC000 16 16 16 - FW-- [stack]

total Kb 1082384 1082312 1074488 -

However when the memory is freed by the application, the system never actually releases it:

neptune: ~/ssa/test$ fg

.lallocl

1

after free

nZ

[1]+ Stopped .lallocl
nept une: ~/ ssa/test$ pmap -x 25294
25294: ./allocl

Address Kbyt es RSS Anon Locked Mbde Mapped File
00010000 8 8 - - r-x-- allocl
00020000 8 8 8 - rw-- allocl
00022000 32632 32632 25808 - FWK- - [heap]
02000000 1048576 1048576 1048576 - rWK- - [heap]
FF280000 864 808 - - r-x-- libc.so.1
FF368000 32 32 32 - rwx-- libc.so.1
FF370000 8 8 8 - rwx-- libc.so. 1

Document generated by Confluence on Aug 07, 2008 18:40 Page 2

FF380000 8 8 8 - TWX-- [anon]

FF390000 8 8 - - r-x-- libc_psr.so.1
FF3A0000 24 16 16 - rWX- - [anon]
FF3B0000 184 184 - - r-x-- ld.so.1
FF3EEO00 8 8 8 - rw-- Id.so.1
FF3F0000 8 8 8 - rwx-- Id.so.1
FFBFC000 16 16 16 - TW-- [stack]

total Kb 1082384 1082320 1074488 -

Even after waiting a long time, on a busy system, the memory never actually gets released. Some
additional tests, with the help of a Sun expert showed that at best the memory can be put in swap when
the system memory is really busy, and that this memory in swap may be retrieved by the system with a
huge cost on performances.

neptune: ~/ ssa/test$ sl eep 1000; pnmap -x 25294
25294: ./allocl

Address Kbyt es RSS Anon Locked Mode Mapped File
00010000 8 8 - - r-x-- allocl
00020000 8 8 8 - rwx-- allocl
00022000 32632 32632 25808 - rWX- - [heap]
02000000 1048576 1048576 1048576 - rWX- - [heap]
FF280000 864 808 - - r-x-- libc.so. 1
FF368000 32 32 32 - rwx-- libc.so. 1
FF370000 8 8 8 - rwx-- libc.so. 1
FF380000 8 8 8 - FWX- - [anon]
FF390000 8 8 - - r-x-- libc_psr.so.1
FF3A0000 24 16 16 - TWX- - [anon]
FF3B0000 184 184 - - r-x-- ld.so.1
FF3EEO00 8 8 8 - rw-- ld.so. 1
FF3F0000 8 8 8 - rw-- ld.so. 1
FFBFCO00 16 16 16 - W [stack]

total Kb 1082384 1082320 1074488 -

Customized malloc

This second test uses the exact same test case as in the example above, but this time it is linked with
dimalloc, the customized malloc.
The file malloc-2.7.2.c can be downloaded from ftp://g.oswego.edu/pub/misc/malloc.c.

dimalloc uses both sbrk and mmap. The sbrk system call will change the size of the heap to be larger
or smaller as needed, while the mmap system call will be used when extremely large segments are
allocated. The heap method suffers the same flaws as any other, while the mmap method may avert
problems with huge buffers trapping a small allocation at the end after their expiration.

The mmap method has its own flaws: it always allocates a segment by mapping entire pages. Mapping
even a single byte will use an entire page

which is usually 4096 bytes. Although this is usually quite acceptable, many architectures provide large
page support (4 MiB or 2 MiB with PAE

on IA-32). The combination of this method with large pages can potentially waste vast amounts of
memory. The advantage to the mmap

method is that when the segment is freed, the memory is returned to the system immediately.

As we will see, the memory is correctly released to the system.
We link the source with dlmalloc:

neptune: ~/ ssa/test$ cc allocl.c nalloc-2.7.2.c -0 alloc2
allocl.c:

mal l oc-2.7.2.c:

neptune: ~/ssa/test$./alloc2

initial state

nZ

[2]+ Stopped .lalloc2

Document generated by Confluence on Aug 07, 2008 18:40 Page 3

ftp://g.oswego.edu/pub/misc/malloc.c

neptune: ~/ssa/test$ ps -u recette | grep alloc2
29207 pts/ 37 0: 00 all oc2

nept une: ~/ ssa/test$ pmap -x 29207

29207: ./alloc2

Address Kbyt es RSS Anon Locked Mbde Mapped File
00010000 16 16 - - r-x-- alloc2
00022000 8 8 8 - rwx-- alloc2
FF280000 864 808 - - r-x-- libc.so. 1
FF368000 32 32 32 - rw-- libc.so. 1
FF370000 8 8 8 - rwx-- libc.so. 1
FF380000 8 8 - - r-x-- libc_psr.so.1
FF390000 8 8 8 - FWX- - [anon]
FF3A0000 24 16 16 - WX- - [anon]
FF3B0000 184 184 - - r-x-- ld.so.1
FF3EEO00 8 8 8 - rwx-- ld.so.1
FF3F0000 8 8 8 - rw-- ld.so. 1
FFBFCO00 16 16 16 - W [stack]
total Kb 1184 1120 104 -
neptune: ~/ ssa/test$ fg
.lalloc2
1
al |l ocated 1073741824 bytes
nZ
[2]+ Stopped .lalloc2

neptune: ~/ ssa/test$ pmap -x 29207
29207: ./alloc2

Address Kbyt es RSS Anon Locked Mode Mapped File
00010000 16 16 - - r-x-- alloc2
00022000 8 8 8 - rwx-- alloc2
BF0O00000 16384 16384 12544 - TW-- [anon]
C0000000 1015808 1015808 1015808 - W [anon]
FEOOO000 16392 16392 16344 - W [anon]
FF280000 864 800 - - r-x-- libc.so. 1
FF368000 32 32 32 - rwx-- libc.so. 1
FF370000 8 8 8 - rwx-- libc.so. 1
FF380000 8 8 - - r-x-- libc_psr.so.1
FF390000 8 8 8 - TWX- - [anon]
FF3A0000 24 16 16 - TWX-- [anon]
FF3B0000 184 184 - - r-x-- ld.so. 1
FF3EEO00 8 8 8 - rw-- ld.so. 1
FF3F0000 8 8 8 - rw-- ld.so. 1
FFBFC000 16 16 8 - TW-- [stack]

total Kb 1049768 1049696 1044792 -

The memory is allocated and accessed just like in the previous test case.

neptune: ~/ssa/test$ fg

.lalloc2

1

after free

nZ

[2]+ Stopped .lalloc2

However this time, when free is called in the application, the memory is directly released and available to
the system:

nept une: ~/ ssa/test$ pmap -x 29207
29207: ./alloc2

Address Kbyt es RSS Anon Locked Mbde Mapped File
00010000 16 16 - - r-x-- alloc2
00022000 8 8 8 - rw-- alloc2
FF280000 864 800 - - r-x-- libc.so. 1
FF368000 32 32 32 - rwx-- libc.so. 1
FF370000 8 8 8 - rwx-- libc.so. 1

Document generated by Confluence on Aug 07, 2008 18:40 Page 4

FF380000 8 8 - - r-x-- libc_psr.so.1
FF390000 8 8 8 - FWX-- [anon]
FF3A0000 24 16 16 - rWX- - [anon]
FF3B0000 184 184 - - r-x-- ld.so.1
FF3EEO00 8 8 8 - rw-- ld.so. 1
FF3F0000 8 8 8 - rwx-- Id.so.1
FFBFC000 16 16 8 - TW-- [stack]
total Kb 1184 1112 96 -

In the context of our application which can have many hundred instances running for hours, this
difference in behavior can dramatically reduce the memory requirements on the server and increase
performances.

We would appreciate to hear from Sun experts if this problem has already been observed for some other

applications, and how it has been handled until now? Also we would like to know what is your position
concerning the use of an customized malloc in applications running on Solaris.

Document generated by Confluence on Aug 07, 2008 18:40 Page 5

